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Introduction. Let s(x; a0, a1, a2, . . . , an) denote a product of sinc functions

s(x; a0, a1, a2, . . . , an) =
n∏

i=0

sinc(aix) : all ai > 0

It was, I believe, David Borwein who first noticed that the sequence

S0 ≡
∫ +∞

−∞
s(x; 1)dx = π

S1 ≡
∫ +∞

−∞
s(x; 1, 1

3 )dx = π

S2 ≡
∫ +∞

−∞
s(x; 1, 1

3 , 1
5 )dx = π

S3 ≡
∫ +∞

−∞
s(x; 1, 1

3 , 1
5 , 1

7 )dx = π

S4 ≡
∫ +∞

−∞
s(x; 1, 1

3 , 1
5 , 1

7 , 1
9 )dx = π

S5 ≡
∫ +∞

−∞
s(x; 1, 1

3 , 1
5 , 1

7 , 1
9 , 1

11 )dx = π

S6 ≡
∫ +∞

−∞
s(x; 1, 1

3 , 1
5 , 1

7 , 1
9 , 1

11 , 1
13 ))dx = π

does not persist: Mathematica supplies

S7 = π · 467807924713440738696537864469
467807924720320453655260875000

= π · 0.9999999999852937
S8 = π · 0.9999999880796184 < S7

Those surprising results were initially attributed to computational error. That



2 Random walks with shrinking steps

and why they are real was explained by David and Jonathan Borwein (father
and son) in an intricate paper1 the simplified essentials of which are presented
in a paper by Hanspeter Schmid2, from whom I now borrow.

The function sinc(ax) is the Fourier transform of the centered box function
of semi-width a and unit area (therefore of height 1/2a):

B(y; a) ≡
{ (1/2a) : −a ! y ! a

0 : otherwise
∫ +∞

−∞
B(y; a)e−ixydy = 1

2a

∫ +a

−a
e−ixydy = sin(ax)

ax
≡ sinc(ax)

Fourier inversion gives

B(y; a) = 1
2π

∫ +∞

−∞
sinc(ax)eixydx

This result (note that sinc(ax) is even) can be rendered

2πB(y, a) =
∫ +∞

−∞
sinc(ax)e−iyxdx

which presents the box function

β(y; a) ≡ 2πB(y; a) =
{ (π/a) : −a ! y ! a

0 : otherwise
as the direct Fourier transform of sinc(ax). Setting y = 0 we therefore have (in
the case a = 1) ∫ +∞

−∞
sinc(x)dx = β(0; 1) = π

To evaluate the Borwein integral of next higher order we use the fact that
the Fourier integral of a product is the convolution of the Fourier transforms of
the factors. Thus

∫ +∞

−∞
sinc(x) · sinc( 1

3x)dx = β(y, 1) ∗ β(y, 1
3 )

∣∣∣
y =0

where Mathematica supplies

β(y, 1) ∗ β(y, 1
3 ) = 1

2π

∫ +∞

−∞
β(z, 1)β(z − y, 1

3 )dz

= 1
2π






(4 + 3y)π2 : − 4
3 < y ! − 2

3

2π2 : − 2
3 < y ! + 2

3

(4 − 3y)π2 : + 2
3 < y ! + 4

3

0 : elsewhere
= π at y = 0

1 “Some remarkable properties of sinc and related integrals,” The Ramanujan
Journal 6, 73–89 (2001). The authors acknowledge “useful discussions” with
(among others) Richard Crandall.

2 “Two curious integrals and a graphic proof,” Elemente der Mathematik
69, 11–17 (2014).
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which when plotted (Figure 4) is seen to have the form of a truncated pyramid
(an “eroded” rectangle), with height π and area 2π identical to those of β(y; 1).
“Erosion” occurs because

β(y; 1, 1
3 ) ≡ β(y, 1) ∗ β(y, 1

3 )

reports the result of averaging β(y; 1) over a sliding base of semi-width 1
3 , which

has reduced the width of the π-plateau from 1 to 1 − 1
3 = 2

3 . The function
β(y; 1, 1

3 ) was seen to be defined segmentally, with junction points at
{
− 1 − 1

3 ,−1 + 1
3 , +1 − 1

3 , +1 + 1
3

}
=

{
± 1 ± 1

3

}

In next higher order we obtain the segmental function

β(y; 1, 1
3 , 1

5 ) ≡ β(y, 1) ∗ β(y, 1
3 ) ∗ β(y, 1

5 )

= 1
2π






π2

60 (529 + 690y + 225y2) : − 23
15 < y < − 17

15

π2(4 + 3y) : − 17
15 < y < − 13

15

π2

60 (71 − 210y − 225y2) : − 13
15 < y < − 7

15

2π2 : − 7
15 < y < + 7

15

π2

60 (71 + 210y − 225y2) : + 7
15 < y < + 13

15

π2(4 − 3y) : + 13
15 < y < + 17

15

π2

60 (529 − 690y + 225y2) : +17
15 < y < + 23

15

0 : elsewhere
= π at y = 0

with junction points at {±1 ± 1
3 ± 1

5}. So it goes. The junction points of
β(y; 1, 1

3 , 1
5 , . . . , 1

2n+1 ) fall at fall at
{
± 1 ± 1

3 ± 1
5 ± · · · ± 1

2n+1

}

and the semi-width of the π-plateau is shrinks according to the scheme

1 = 1
1 − 1

3 = 2
3

1 − 1
3 − 1

5 = 7
15

1 − 1
3 − 1

5 − 1
7 = 34

105

1 − 1
3 − 1

5 − 1
7 − 1

9 = 67
315

1 − 1
3 − 1

5 − 1
7 − 1

9 − 1
11 = 422

3465

1 − 1
3 − 1

5 − 1
7 − 1

9 − 1
11 − 1

13 = 2021
45045

1 − 1
3 − 1

5 − 1
7 − 1

9 − 1
11 − 1

13 − 1
15 = − 982

45045

The occurance of the minus sign signifies that the π-plateau has been eroded
away. We have traced the Borwein phenomenon to a property of convoluted
box functions, and more specifically to

β(y; 1, 1
3 , 1

5 , . . . , 1
2n+1 )

∣∣∣
y=0

= π : n = 0, 1, 2, 3, 4, 5, 6

< π : n = 7, 8, 9, . . .
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Borwein & Borwein establish more generally that

Sν ≡
∫ +∞

−∞
s(x; a0, a1, a2, . . . , aν)dx = β(0; a0, a1, a2, . . . , aν)

= π : a0 −
∑ν

i=1ai ! 0 (1)
< Sν−1 : otherwise

Let the sequence {a0, a1, a2, . . .} of positive numbers decrease monotonically, let
N be the greatest value of ν for which (1) is satisfied, and let 0 ! n ! N . Then
β(y; a0, a1, a2, . . . , an) is formed by splicing distinct segments, with junction
points at a0 ± a1 ± a2 ± · · · ± an. It is this fact that provides our point of
departure.

Some elementary general principles. Assume ai ! ai+1 (i = 0, 1, 2, . . .). Then

a0 ± a1 ± a2 ± · · · ± an

describes the 2n possible terminal points Yn = {y1, . . . , y2n}—some of which
may be coincident— of a walker who, starting from the origin (y = 0), takes a
step of length a0 to the right, then a step of shorter length a1 to the right or left,
then. . .until finally a shortest step of length an to the right or left. The first-
step -to-the-right convention—originally motivated by the Borwein result—is
sometimes illuminating, but sometimes not. Its abandonment results in walks
of the more symmetric construction

± a0 ± a1 ± a2 ± · · · ± an

To speak of the probability that the walker will, after n steps, stand on a
designated element of Yn (i.e., to construct a probability density function) it is
necessary to assign right/left probabilities to each successive choice point ± . In
the one-dimensional literature3 it is almost invariably assumed (as henceforth
in this paper) that the walker always steps right/left with equal probability.

In the theory of random walks in several dimensions one encounters much
greater variability in this regard; diverse probability distribution functions are
used to determine next-step direction and length. By this means one can, for
example, model ordinary and fractional diffusion. Walks in phase space, with
next-step probabilities taken from local structure of the Hamiltonian, can—as I
have shown elsewhere—be used to construct a “stochastic classical mechanics.”
Walks on resistive networks, thought of as graphs, with probabilities
determined by the conductances of the edges that radiate from each node, can

3 See, for example, Kent E. Morrison,“Random walks with decreasing steps,”
available on the web (1998); P. L. Krapivsky & S. Redner, “Random walks with
shrinking steps,” AJP 72, 591–598 (2004) and papers cited there. A popular
account of the essentials of the K&R paper can be found in §15.2 of Paul Nahin,
Mrs. Perkins’s Electric Quilt (2009).
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be used to reproduce Kirchhoff’s laws, as was first remarked by S. Kakutani.4
Some of the topics mentioned above are illustrated in “Some Miscellaneous
Adventures in Experimental Mathematical Physics,” notes (in the form of
a Mathematica notebook) of a Reed College physics seminar presented on
9 November 2011. The title was intended to bring to mind the “experimental
mathematics” of which Jonathan and Peter Borwein were (in collaboration
with—among others—Richard Crandall) founding fathers.

The qualitative features of random walks are most readily exposed by
simulation, and it is usually only in the wake of features thus brought to light
that one undertakes analytical work. Simulated construction of the endpoints of
populations of n-step one-dimensional walks can be produced by the command

Walks= Table[
∑n

k=0 RandomChoice[{-1,1}]ak,{#}]

where # specifies the number of walks to be included in the simulated population.
The subsequent command Union produces an ordered list of all the distinct
endpoints in the sample, but here a cautionary word is in order: the meaning
of “distinct” is contingent upon Mathematica’s management of round-off errors
(as we will have occasion to observe). If the subsequent command Length
announces 2n one is assured that the sample was large enough to produce
instances of all possible such walks. If, on the other hand, Length persists
in announcing ν < 2n even when # is substantially increased one can infer
that one has in hand a complete set of walks some members of which have
coincident endpoints. The origins of such “co-terminality” will be one of our
main concerns.

Authors are most commonly interested in the distribution of the endpoints
in the sample. To that end, divide the interval bounded by ±W—here

W =
n−1∑

k=0

ak sets the bound on an n-step walk

into (say) 1000 subintervals (“bins”) of width w = 2
1000W and use the command

BinCounts[Walks, {−W, W, w}] to distribute the endpoint data among the
bins (it is, for this purpose, essential to increase the sample size # to a large
number). Use ListPlot to display the resulting distribution, which when
suitably normalized becomes the probability distribution.5

Co-terminal harmonic walks. I will be concerned in these pages not with the
probabilistic distribution of endpoints (though some such distributions will be
included among the figures) but (i) with circumstances that give rise to the

4 “Markov processes and the Dirichlet problem,” Proc. Jap. Acad. 21, 227–
233 (1945); the subject is developed in elaborate detail in Peter G. Doyle &
J. Laurie Snell, Random Walks and Electric Networks (1984), now available on
the web as a free pdf download.

5 Note that the shape of the distribution depends critically on the bin width.
If w is made too small the distribution reduces to an array of discrete spikes.
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occurance of n-step walks with coincident endpoints, and (ii) with certain
patterns that emerge when one looks to the intervals that separate next-nearest
endpoints. I restrict my attention to walks in which the sequence of step -lengths
progress either harmonically or geometrically .

harmonic n-step walks

Set
ak = 1

pk + q
: pq $= 0

The resulting sequence {ak} is “harmonic” because each element (after the
first) is the harmonic mean (i.e., the reciprocal of the arithmetic mean of the
reciprocals) of its nearest neighbors:

ak =
[

1
2

( 1
ak−1

+ 1
ak+1

)]
–1

From ∫ n

1

1
pk + q

dk = p–1 log pn + q
p + q

we infer that all such sequences diverge, if with logarithmic slowness; i.e., that
all harmonic n-step walks are unbounded in the limit n → ∞.

uniform n-step walks Set p = 0, q = 1. Obtain {ak} = {1, 1, 1, . . .}
which gives rise to the simplest of all random walks, one in which every step
has the same unit length. After n steps, of which m were to the right and n−m
were to the left, the walker stands at ym = m − (n − m) = 2m − n, which is
even or odd according as n is. The walker can arrive at ym in any of binomially
many distinct ways; i.e, by following any of

(n
m

)
many distinct co-terminal

paths. As n increases the distribution becomes an ever-better approximation
to the normal distribution. Such walks model simple one-dimensional diffusion.

borwein n-step walks Set p = 2, q = −1. Obtain

{ak−1}k>0 =
{
1, 1

3 , 1
5 , 1

7 , . . .
}

which gives rise to Borwein’s shrinking step walks. The set of 2n n-step Borwein
endpoints ranges on a set Yn bounded by ±W with

W = 1 + 1
3 + 1

5 + 1
7 + · · · + 1

2n−1

= 1
2

(
polygamma

[
0, n + 1

2

]
− polygamma

[
0, 1

2

])
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The elements of Yn can be determined by a scheme such as the following

+1 + 1
3 + 1

5 = + 23
15 = 1.533333

−1 + 1
3 + 1

5 = − 7
15

+1 − 1
3 + 1

5 = + 13
15 = 0.866667

−1 − 1
3 + 1

5 = − 17
15

+1 + 1
3 − 1

5 = + 17
15 = 1.133333

−1 + 1
3 − 1

5 = − 13
15

+1 − 1
3 − 1

5 = + 7
15 = 0.466667

−1 − 1
3 − 1

5 = − 23
15






(2)

(note the sign-reversed bilateral symmetry about the midpoint, the origin of
which is obvious), but in higher order it is far easier to proceed by simulation.

Accordingly, I created a population of 1,000,000 simulated 15-step Borwein
walks (first step to the right).6 Members of the population were found to
terminate at 16,384 distinct points. But there are 214 = 16, 384 such walks
altogether. Evidently it is impossible for such walks to be co-terminal.

Generally, if walks wn,1 and wn,2 are co-terminal siblings (same set of step
lengths, different ± choices) then Aµ = 1

2 (wn,1−wn,2) must be a µ-step subwalk
(µ ! n) that sums to zero (a “null walk”). Given such an Aµ, one has

wn,1 = {+Aµ, Ωn−µ}
wn,2 = {−Aµ, Ωn−µ}

where Ωn−µ refers to any n-step walk from which the elements of Aµ have been
deleted (of which there are 2n−µ).

I was led by my experience in the case n = 15 to formulate the following

conjecture : It is impossible from Borwein steps
to construct such a null walk Aµ.

Ray Mayer promptly supplied a counterexample: he observed that

(1 + 7) − (3 + 5) = 0

which when divided by 1 · 3 · 5 · 7 = 105 produces

1
105 + 1

15 − 1
35 − 1

21 ≡ A4 = 0 (3)

6 Such walks are bounded on the right by

W = 1 +
15∑

k=2

1
2k − 1

= 1
2

(
polygamma

[
0, 15 + 1

2

]
− polygamma

[
0, 1

2

])

= 2.33587

and on the left by −0.33587.
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But 1
105 = 1

2n−1 entails n = 53, so it is in the 52-step (first-step-to-the-right)
Borwein walk that “Ray’s identity”(3) first produces co-terminal walks.7 There
are a total of

252 = 4.5036 × 1015

such walks, so to detect the occurance of such co-terminality one would have to
simulate something like 1018 52-step walks, which lies beyond the capability of
any computer. Yet in that order co-terminality occurs 252−4 = 2.81475 × 1014

times, or in 6.25% of the possible 52-step Borwein walks. These remarks
illustrate the hazard latent in experimental mathematics. And the
occasionally surprising power of simple analytical argument.

Ray’s argument admits of infinite variation. From (for example8)

1 + 11 = 3 + 9 = 5 + 7

we are led to the Borwein null walks

A4 = 1
27 − 1

33 − 1
99 + 1

297 = 0
B4 = 1

105 − 1
135 − 1

189 + 1
315 = 0

C4 = 1
35 − 1

55 − 1
77 + 1

385 = 0

Note that the denominators are all odd, and distinct. And that those null walks
are disjoint (can occur simultaneously). The implication is that in Borwein
walks of order n " 384, of which there are 2384 = 3.9402× 10115, we can expect
to encounter 8-fold co -terminal walks of the form

{±A4,±B4,±C4, Ωn−12}

We can, however, expect additional instances of co -terminality to arise similarly
from other null walks. It would be difficult to list all the possibilities, and thus
to arrive at the total number of distinct endpoints presented by Borwein walks
of this or any given order.

simple harmonic n-step walks Set p = 1, q = 0. Obtain the harmonic
sequence

{ak} =
{
1, 1

2 , 1
3 , 1

4 , . . .
}

The resulting simple harmonic n-step walks, if they depart from the origin,
are bounded by ±Hn = ±HarmonicNumber[n]. Both Hn and the associated

7 We note that, though Borwein walks of ascending order are unbounded,
the right bound of such walks (52 steps after a first unit step to the right) lies
at 2.96691, not that far beyond the right bound of the 15-step walks considered
previously.

8 Suggested by the Mathematica command Compositions[12,2], which
produces 2-element partitions of 12. Or use Partitions[ ] to produce a vast
assortment of more complex possibilities. Both commands require installation
of the Combinatorica package: Needs["Combinatorica‘"].
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infinite series are are subjects which, over the centuries, have generated a vast
literature.9 Here I remark only that simple harmonic walks are walks in which
co-terminality is ubiquitous. For let {a, b, c, d} be any set of distinct (positive
or negative) integers that sum to zero:

a + b + c + d = 0

Division by their product gives

1
bcd

+ 1
acd

+ 1
abd

+ 1
abc

= 0 (3)

where some of the terms will be positive, others negative, and the denominators
are distinct. The simplest such construction proceeds from 1+2−3 = 0, which
gives

A3 = 1
6 + 1

3 − 1
2 = 0

and leads to co -terminal n-step harmonic walks for all n " 6. In the case n = 6
there are 26 = 64 possible walks, among those occur 26−3 = 8 co -terminal
walks of the form {±A3, Ω6−3}. By this reckoning we might expect the set of
such walks to possess a total of 26 − 23 = 56 distinct endpoints. Simulation
indicates, however, that the actual total is 52. Detailed calculation based upon
the 64-element harmonic analog of (2) exposes the existence of the harmonic
null walk

E4 = 1 − 1
2 − 1

3 − 1
6 = 0

which is not of the class (3) So among the set of all 6-step simple harmonic walks
we encounter 26−4 = 4 co -terminal walks of the form {±E4, Ω6−4}. Those are
distinct from the instances of co -terminality produced by A3, so the number of
distinct endpoints becomes 26 − 23 − 22 = 52, as observed. For 7-step simple
harmonic walks the same argument predicts 27 − 24 − 23 = 2(26 − 23 − 22) =
2 · 52 = 104 distinct endpoints, which is again the number observed.

The case E4 arises from the circumstance that 6 = 1 + 2 + 3 is a “perfect
number,” the sum of its proper divisors (excluding itself). The theory of
such numbers has ancient roots, but remains in important respects incomplete.
Euclid established—remarkably!— that q(q + 1)/2 is an even perfect number
whenever q is a Mersenne prime (i.e, prime of the form 2p − 1 with p prime),
and Euler proved that all even perfect numbers are of that form. From the
primes 2, 3, 5, 7, 13 we are led thus to the perfect numbers

21(22 − 1) = 6

22(23 − 1) = 28

24(25 − 1) = 496

26(27 − 1) = 8128

212(213 − 1) = 33550336

9 See, for example, Julian Havil, Gamma: Exploring Euler’s Constant (2003).
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But not every number of the form 2p − 1 is prime (211 = 23 · 89). It is not
known whether the number of Mersenne primes is finite or infinite (so whether
the number of even perfect numbers is finite or infinite), and it is not known
whether there exist any odd perfect numbers.10 Using the command Divisors
to obtain lists of the proper divisors of successive perfect numbers, we obtain
(for example)

E6 = 1 − 1
2 − 1

4 − 1
7 − 1

14 − 1
28 = 0

which contributes to the co-terminality of n-step simple harmonic walks only
for n " 28.

Co-terminal geometric walks. We turn our attention now from walks in which
step-length values increment harmonically to walks in which they increment
geometrically

ak = λk : λ > 0

The sequence {λk} diverges if λ > 1, and so do the series
∑∞

k=0 λk and the
associated random walks ±λ0 ± λ1 ± λ2 ± · · · ± λn−1 : n → ∞. We restrict our
attention to convergent cases: λ < 1.

Convergent geometric n-step walks are bounded by ±Wn(λ) with

Wn(λ) = 1 − λn+1

1 − λ
< 1

1 − λ
= W∞(λ)

The 2n endpoints of such walks live (if 0 < λ < 1
2 ) within an interval that

encloses the interval [−1, +1 ] and is contained within the interval [−2, +2 ]; the
set Yn of such points becomes, as Krapivsky & Redner demonstrate,3 a Cantor
set in the limit n → ∞, with the consequence that the asymptotic distribution
of those points cannot be graphed.

Krapivsky & Redner assert also that—by an elementary argument, and
as simulations (Figure 31) appear to confirm—in the critical case λ = 1

2 the
asymptotic distribution is flat on the interval [−2, +2 ].

10 It is, however, known (as of 2012) that the least odd perfect number—if it
exists—is greater than 101500. Among the many remarkable properties of even
perfect numbers I note only that

28 = 1 + 2 + 3 + 4 + 5 + 6 + 7

= 13 + 33

496 = 1 + 2 + 3 + · · · + 29 + 30 + 31

= 13 + 33 + 53 + 73

8128 = 1 + 2 + 3 + · · · + 125 + 126 + 127

= 13 + 33 + 53 + 73 + 93 + 113 + 133 + 153

33550336 = 1 + 2 + 3 + · · · + 8189 + 8190 + 8191

= 13 + 33 + 53 + · · · + 1233 + 1253 + 1273
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So it is with particular interest that we look cases with 1
2 < λ < 1. To

demonstrate the characteristic features of typical cases, K&R look by simulation
to the distribution that results from arbitrarily setting λ = 0.74. As a first step
toward reproduction of their figure, I simulated 500,000 15-step (first-step-
to-the-right) geometric walks with λ set to that valu (such walks are bounded
on the right by 3.81506, which in the asymptotic limit becomes 3.84615) and
found that those walks possessed 16,384 distinct endpoints. But 214 = 16, 384,
so none of those 214 geometric walks are co-terminal. On the basis of such
evidence I was led to formulate the following

conjecture : For no distinct {p, q, . . . , r} (and implicitly
for no λ) can λp±λq ±· · ·±λr = 0; i.e., null geometric walks
do not exist.

Once again, Ray Mayer promptly supplied a counterexample, of which I provide
the simplest instance.

Look to the polynomial f(λ) = λ2 + λ − 1. Immediately f(0) < 0 and
f(1) > 1, so f(x) must possess a real root in the interval (0, 1). That root is in
fact given by

λ =
√

5 − 1
2

= 1
GoldenRatio

= 0.6180339887 (4)

which, as it happens, does fall within the “interesting interval” (1
2 < λ < 1).11

So for that particular value of λ

A3(λ) = λ2 + λ − 1 = 0

provides an instance of a null geometric walk, and so do

A(p)
3 = λp(λ2 + λ − 1) = 0 : p = 1, 2, 3, . . .

Those introduce instances of co-terminality into geometric n-step walks (n " 3),
but those hinge critically upon the precise value (4) of λ, so cannot be expected
ever to become evident in casually constructed simulations. We have here again
an illustration of the hazard latent in experimental mathematics.

Ray’s construction admits readily of generalization. We have, for example,

A(p)
5 = λp(λ6 + λ5 + λ4 + λ − 1) = 0 : λ = 0.644524

and the list of such examples could be extended indefinitely.

11 Ray himself looked to the next simplest case g(λ) = λ3 +λ2 +λ−1, which
gives

λ = 1
3

{
(17 + 3

√
33)1/3 − 2

(17 + 3
√

33)1/3
− 1

}
= 0.543689

—a number to which one is led also if (looking for advice to the graph of g(x))
one commands FindRoot[g[x]==0,{x,0.5}].
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Endpoint patterns. My objective here will be simply to describe—and only
occasionally to attempt to explain—certain striking patterns that emerge when
one looks to ordered sequences {e1, e2, . . . , eν} of the distinct endpoints of
simulated n-step walks of various kinds. We will look also to the sequences of
first differences dk = ek+1 − ek and to the ordered sequences {y1, y2, . . . , y2n},
which will expose patterns of co-terminality. It was graphic experimentation
with low-order geometric walks that sparked my interest in this subject, so I
look first to some of those.

When 2n is not too large it becomes feasible to construct an explicit
tabulation of the geometric walks of given small order. This is worth doing
because—as will emerge—it makes it possible to expose a certain limitation
inherent in simulations, and also to discover the specific meanings of certain
characteristic results. On the next page I provide a tabulation of the 5-step
geometric walks. The table has been designed to permit one to extract tables
of 2, 3 and 4-step geometric walks as sub-tables.

5, 6 and 7-step golden walks

Working from the table, with λ = 1
2 (
√

5 − 1), one obtains12 the array of 32
points shown in Figure 5. The figure shows 8 instances of double endpoint
coincidence and 2 instances of triple coincidence. There are, therefore, only
32−8 ·1−2 ·2 = 20 distinct endpoints. To account for the coincidences it is—in
view of the bilateral symmetry of the array (the origin of which is obvious)—
sufficient to look only to the right half of the figure. The double coincidences
all arise from the occurance of null walks ±λ0,1,2(1 − λ − λ2):

{1 − λ − λ2 + λ3 − λ4,−1 + λ + λ2 + λ3 − λ4} = λ3 − λ4 = 0.09017

{1 − λ + λ2 + λ3 − λ4, 1 + λ − λ2 − λ3 − λ4} = 1 − λ4 = 0.85410

{1 − λ + λ2 + λ3 + λ4, 1 + λ − λ2 − λ3 + λ4} = 1 + λ4 = 1.14590

{1 + λ − λ2 + λ3 + λ4, 1 + λ + λ2 − λ3 − λ4} = 1 + λ = 1.61803

So do two of the triple coincidences

{1 − λ − λ2 + λ3 + λ4,−1 + λ + λ2 + λ3 + λ4} = λ3 + λ4 = 0.38197

but the third

{1 − λ + λ2 − λ3 − λ4} = 1 − λ = 0.38197

hinges on the identity 1 − λ = λ3 + λ4, which follows as a corollary from the
structure of null Golden Walks: {1−λ−λ2}+{λ2−λ3−λ4} = 0. The problem
of enumerating the various co-terminalities present in n-step Golden Walks is
made very difficult by the circumstance that such corollaries exist in unlimited
variety.

12 Use Sort to place the endpoints in ascending order.
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ennumeration of all possible 5-step geometric walks

1. 1 + λ + λ2 + λ3 + λ4

2. 1 − λ + λ2 + λ3 + λ4

3. 1 + λ − λ2 + λ3 + λ4

4. 1 − λ − λ2 + λ3 + λ4

5. 1 + λ + λ2 − λ3 + λ4

6. 1 − λ + λ2 − λ3 + λ4

7. 1 + λ − λ2 − λ3 + λ4

8. 1 − λ − λ2 − λ3 + λ4

9. 1 + λ + λ2 + λ3 − λ4

10. 1 − λ + λ2 + λ3 − λ4

11. 1 + λ − λ2 + λ3 − λ4

12. 1 − λ − λ2 + λ3 − λ4

13. 1 + λ + λ2 − λ3 − λ4

14. 1 − λ + λ2 − λ3 − λ4

15. 1 + λ − λ2 − λ3 − λ4

16. 1 − λ − λ2 − λ3 − λ4

17. − 1 + λ + λ2 + λ3 + λ4

18. − 1 − λ + λ2 + λ3 + λ4

19. − 1 + λ − λ2 + λ3 + λ4

20. − 1 − λ − λ2 + λ3 + λ4

21. − 1 + λ + λ2 − λ3 + λ4

22. − 1 − λ + λ2 − λ3 + λ4

23. − 1 + λ − λ2 − λ3 + λ4

24. − 1 − λ − λ2 − λ3 + λ4

25. − 1 + λ + λ2 + λ3 − λ4

26. − 1 − λ + λ2 + λ3 − λ4

27. − 1 + λ − λ2 + λ3 − λ4

28. − 1 − λ − λ2 + λ3 − λ4

29. − 1 + λ + λ2 − λ3 − λ4

30. − 1 − λ + λ2 − λ3 − λ4

31. − 1 + λ − λ2 − λ3 − λ4

32. − 1 − λ − λ2 − λ3 − λ4
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Figure 6 was produced by using Union to sort and order the endpoints
present in a population of 1000 simulated 5-step Golden Walks. It displays only
30 points because Union considered the coincident endpoints at ±1.61803 to
be identical, but—because of the way it manages round-off errors—considered
all other coincident endpoints to be distinct. This points to a fundamental
limitation of the simulation procedure.

The command DeleteDuplicates[SetPrecision[Data],7], with Data
taken to be that which produced either of the two preceding figures, produces
the display of distinct 5-step Golden Walk endpoints shown in Figure 7. The
display is remarkable for its linearity and seeming regularity. To test regularity
we construct a table of first differences, which is plotted in Figure 8. We see
that all successive differences assume one or the other of only two values. The
figure is remarkable also for the symmetry of the pattern in which those values
are arrayed; bilateral symmetry was to be expected, but (if one excuses the
dangling last point) perfect bilateral symmetry is evident also on each half of
the figure.

For the 6 & 7-step siblings of Figures 7 & 8 see Figures 9 & 10 and
Figures 11 & 12.13 Mathematica reports a total of 36 distinct endpoints for
6-step Golden Walks, but insists upon including among those four copies of 0.
Those arise from ±{1 − λ − λ2} ± λ3{1 − λ − λ2}. It also reports coincident
endpoints ±2, which arise from ±{1 + λ + λ2 ± λ3{1− λ− λ2}} by λ + λ2 = 1.
The bilateral symmetry of Figure 10 has (of course) been retained; that of its
individual halves has been lost, but is recovered if one replaces the quadruple 0
by a single 0. Interestingly, the greatest of the 6-step differences was the least
of the 5-step differences.

Mathematica reports a total of 54 distinct endpoints for 7-step Golden
Walks, and retains no spurious coincidences. Again, the linearity and seeming
regularity of the array (Figure 11) is conspicuous. The array of first differences
(Figure 12) is again highly symmetric. The greatest of the 7-step differences
was the least of the 6-step differences.

5, 6 and 7-step mayer walks

I turn now to the geometric walks that sparked my interest in this subject, the
patterns latent in the null condition 1− λ− λ2 − λ3 = 0, the next higher order
sibling of the Golden condition 1 − λ − λ2 = 0. Working again from the list of
possible 5-step geometric walks, with λ set now to Ray’s value11 λ = 0.543689,
we obtain the array of endpoints shown in Figure 13. We see four coincident
endpoints. Two of those arise from

±{−1 + λ + λ2 + λ3} + λ4 = λ4 = 0.087378

13 Simulated data suffices in those higher-order cases; explicit 64-line and
128-line step -lists are easy enough to render in Mathematica notebooks, but
are too large to fit onto the TEX page.
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and its negative. The other two arise from

1 ± λ{1 − λ − λ2 − λ3} = 1

and its negative. There are evidently 32 − 4 = 28 distinct endpoints, which
are seen in Figure 14 to fall in regular linear array. But successive differences
range now on a symmetrically distributed set of three values (Figure 15). Both
linearity and 3-point bilateral symmetry persist when one advances from 5-step
to 6-step to 7-step Mayer walks (Figures 16 & 17). Also persistent is the
pattern

least difference becomes greatest difference

when one increments the number of steps.

While linearity was an unanticipated surprise, I am particularly intrigued
by several aspects of the difference patterns, and remain unable to account for
either.

To place the preceding results in context—to gain a sense of the respect (if
any) in which the Golden and Mayer walks (and their higher-order siblings) are
“special”—I look to the patterns that develop when λ is assigned Krapivsky &
Redner’s arbitrarily selected “typical” value λ = 0.74. Looking specifically to
5-step K&R walks, we find (Figure 18) that there are in this case 25 = 32
distinct endpoints (none coincident), and that they present a pattern that
—while bilaterally symmetric, and still semi-regular—departs noticably from
linearity.14 The patterned departure from linearity becomes more conspicuous
when (Figure 19) one looks to the endpoints of 15-step K&R walks. The
successive differences derived from 5-step K&R walks (Figure 20) fall into a
pattern much less orderly than those provided by Golden/Mayer walks, but
in which the neighborhoods of two values predominate. The somewhat less
“typical” value λ = 1/

√
2 = 0.707107 produces a more orderly variant of those

figures (Figures 21 & 22). I conclude that Golden/Mayer walks and their
siblings are indeed “special,” but for reasons that remain obscure.

5-step borwein & simple harmonic walks

A generic version of the list on page 13 appears on the next page. If, into that
list, one inserts

{a, b, c, d} = { 1
3 , 1

5 , 1
7 , 1

9}

one obtains the 5-step Borwein endpoint data that was used to construct
Figures 23 & 24. To allude to the nonlinearity of the ordered list of endpoints
(Figure 23) is to allude simply to the high variability evident in the display
(Figure 24) of successive differences, which assume 8 = 32/4 distinct values,
the maximal number possible, given the symmetry of the situation. Results
derived from 6-step Borwein walks (Figures 25 & 26) are qualitatively similar,

14 The detached endpoints are typical, and arise from the distinction between
{1 + λ + λ2 + · · · + λn−1 ± λn}.
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generic 5-step walks

1. 1 + a + b + c + d

2. 1 − a + b + c + d

3. 1 + a − b + c + d

4. 1 − a − b + c + d

5. 1 + a + b − c + d

...

29. − 1 + a + b − c − d

30. − 1 − a + b − c − d

31. − 1 + a − b − c − d

32. − 1 − a − b − c − d

except that the successive differences assume only 10 distinct values, fewer
than the 16 = 64/4 one might have anticipated. The “least becomes greatest”
principle has been lost. The endpoints of 1,000,000 15-step Borwein walks are
shown in Figure 27 (compare Figure 19); the simulation produced a total
of 215 = 32768 distinct endpoints (coincident endpoints not possible for such
walks).

Proceeding similarly from

{a, b, c, d} = { 1
2 , 1

3 , 1
4 , 1

5}

one obtains the 5-step simple harmonic endpoint data that was used to construct
Figures 28 & 29. There are now only 5 distinct successive differences, and
they are presented in relatively more orderly array, which shows up as the
relatively more perfect linearity of the display of endpoints. The endpoints
of 1,000,000 15-step simple harmonic walks are shown in Figure 30; the
simulation produced only 9664 distinct endpoints (such walks present a high
incidence of co-terminality).

These results underscore the exceptional nature of Golden Walks, Mayer
Walks and their siblings,15 and pose this

problem : Explain why geometric walks that arise from
the conditions 1 − λ − λ2 − · · ·− λn = 0 possess so few
successive differences, why those are patterned as they
are, and why they conform to the “least becomes greatest”
principle.

15 Brief allusion to this class of walks appears in Thanu Padmanabhan’s
Sleeping Beauties of Theoretical Physics: 26 Surprising Insights (2015), page
268.
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Endpoint distributions for some assorted random walks. The following remarks
refer to the production and interpretation of Figures 31– 38. In each instance,
the bounds ±W of the walk in question were calculated, and a list of the
endpoints of 2,000,000 simulated 20-step walks produced (a task which in most
instances took Mathematica about two minutes to accomplish). The command
BinCounts was used to sort the endpoints into 1000 bins of width 2W/1000.
The resulting bin counts were divided by 2W×1000 to produce the “fractional
bin count” that is plotted in the figures.

As was remarked on page 10, geometric walks with 0 < λ < 1
2 terminate on

the points of a Cantor set, so their endpoint distribution “cannot be graphed.”
Geometric walks with 1

2 < λ < 1 are bounded; they give rise to distributions
that are “graphable in principle,” to—as will emerge—at least the extent that
fractal curves are graphable. The “critical case” λ = 1

2 is problematic; it led
K&R to devote §4 of their paper3 to the intricate development of an “exact
distribution for λ = 2−1/m ” for which Paul Nahin3 sketches a much simpler
alternative, but is a case which the resourceful Padmanabhan15 considers to be
“extraordinarily hard to analyse.” Figure 31 supports the assertion that the
distribution is in this case flat. Here Bin #0 corresponds to y = −2, #1000
corresponds to y = +2.

The Golden Walk, which is generated by the polynomial equation

1 − λ − λ2 = 0

and arises from setting λ = 1
2 (
√

5 − 1) = 1/GoldenRatio ϕ, gives rise to
the distribution approximated by Figure 32, which has attracted widespread
attention because of its striking self-similar fractal construction. Krapivsky &
Redner report3 that B. Solomyak16 has used “Golden ratio magic” to account
analytically for every detail of the Golden distribution. #s 0 & 1000 correspond
to y = ±2.62, respectively.

The Mayer Walk, which is generated by the polynomial equation

1 − λ − λ2 − λ3 = 0

and arises from setting11 λ = 0.543689, gives rise to the self-similar fractal
distribution shown in Figure 33. #s 0 & 1000 correspond to y = ±2.20. Note
that some of the spikes rise (like δ-functions) beyond 1. This is because here—
as always—the form of the simulated curve depends upon bin width. When the
number of bins in increased from 1000 to 1100 (and bin width correspondingly
decreased) one obtains Figure 33B.

K&R’s “typical” λ = 0.74 produces the relatively gentle distribution shown
in Figure 34, where #s 0 & 1000 correspond to y = ±3.85. The “less typical”
value λ = 1/

√
2 = 0.707107 produces the curiously structured yet quite benign

distribution shown in Figure 34: #s 0 & 1000 correspond to y = ±3.42.

16 “On the random series
∑

±λi (an Erdös problem),”Ann. Math. 142, 611–
625 (1995).
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It will be appreciated that what appear to be “curves” in the preceding
figures are actually histograms: 220=1, 048, 576 points are dropped onto a finite
interval that has been partitioned into1000 subintervals (“bins”)and the number
of points in each bin displayed. With sufficiently fine resolution the display
would consist of a series of δ-spikes, of height determined by co-terminality
(the number of walks that share the endpoint in question). But geometric
walks with 1

2 ! λ < 1 remain bounded even as the number of steps n → ∞,
so it becomes meaningful to contemplate the proper curves (which might, in
principle, display discontinuities or singularities) that arise in that limit.

But harmonic walks are unbounded in the limit; histograms remain
histograms; every such display is specific to a particular value of n, though
its qualitative features may persist when the value of n is incremented. Figure
36 shows the histogram that results from 20-step Borwein walks, Figure 37
shows the quite different histogram that results from 20-step simple harmonic
walks. The structure of these histograms is implicit in Figures 27 & 30.

Concluding remarks. I came to this subject from the theory of Borwein integrals,
and particularly from the convolutions of box functions which account for the
“Borwein phenomenon.” The historic roots of the theory of geometric walks
can, however, be traced to work done eighty years ago by A. Wintner17 and
P. Erdös.18 P. L. Krapivsky & S. Redner—who were attached to the Center for
BioDynamics, the Center for Polymer Studies and the Department of Physics
at BostonUniversity—came to it from (or at least were at pains to cite) its
physical applications. Curiously, their work (2003) leads them back to aspects
of the theory of Borwein integrals—Figure 4 appears as their Figure 3—but
they were unaware of the Borwein paper (2001), and failed to notice the Borwein
phenomenon. The theory of convergent geometric walks has been pursued to
rarified heights. For example, K&R remark—following Erdös—that the Golden
Ratio ϕ = 1.61803 is a “Pisot number,”19 and that the distribution functions
that arise from walks with λ = 1/p (p a Pisot number ∈ (1, 2)) are singular.
K&R’s report of “little visual evidence of spikiness” for λ " 0.7 is supported
by Figure 34 (λ = 0.74), but at

λ = 1
smallest Pisot number

= 0.754878

17 B. Jensen & A. Wintner,“Distribution functions and the Riemann zeta
function,”Trans. Am. Math. Soc. 38, 48–88 (1935); K. Kershner & A. Wintner,
“On symmetric Bernoulli convolutions,” Am. J. Math. 57, 541–548 (1935); A.
Wintner, “On convergent Poisson convolutions,” ibid. 57, 827–838 (1935).

18 “On a family of symmetric Berenoulli convolutions,” Am. J. Math. 61,
974–976 (1939); “On smoothness properties of a family of Bernoulli
convolutions,” 62, 180–186 (1940).

19 Often claimed to be the smallest such number, though the real root 1.32471
of 1 + x − x3 = 0 was shown by C. L. Segel (1944) to be the actual smallest.
A root of a polynomial with integer coefficients is a “Pisot number” if all other
roots have modulus less than one.
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spikiness is again vividly evident (Figure 38), where #s 0 & 1000 correspond
to y = ±4.08.

A word about all this came about. The story has a sad beginning. When
I learned of the quite unexpected and untimely death of Richard Crandall
(1947–2012), my former student and dear colleague, I immediately relayed news
of that sad event to Stephen Wolfram, Jonathan Borwein, Carl Pomerance and
Michael Berry, with the first three of whom Richard had frequently collaborated,
and with the last of whom—at a conference organized by Borwein—Richard
had interacted a few days before his death, and proposed to collaborate. I then
found myself in correspondence—touching on a variety of topics—with each of
those remarkable individuals.20

Joe Buhler—Richard’s Reed College classmate and frequent collaborator—
returned to the college on 15 September 2016 to present a mathematics seminar.
In pre-seminar conversation I mentioned that in Wolfram’s recently-published
book Idea Makers Richard appears in a short list of some very distinguished
contributors to the theory and practice of computation (Feynman, Gödel,
Turing, von Neumann, Leibniz, Ramanujan, Jobs, . . . ) but that there is no
mention there of the Borwein dynasty (David, Jonathan & Peter: father and
sons), which has contributed so conspicuously to the recent development of
computer-based “experimental mathematics,” and is in some ways reminiscent
of the Bernoulli dynasty. Joe responded that they (as Canadians) generally use
Maple (instead of Mathematica), and mentioned that Johathan Borwein—who
was four years younger than Richard—had recently died (on 2 August 2016, at
age 65). I went to the web in search of details, and was surprised to discover
that—though Borwein was a prolific mathematician, and had with co-authors
produced a steady stream of books and papers that report an unusually rich
assortment of fascinating results—the Wikipedia article provides links to only
two. One presents a series of “Borwein algorithms” that permit decimal
approximations to 1/π to be augmented (not term by term, but) by factors
of 3 else 4 else 5 else 9. The other is to a paper1 by Borwein and his father.
That 16-page paper proceeds by fairly heavy Fourier analysis, and is not at all
transparent. The Wikipedia article “Borwein integral”—taken from §4.
Remarks 2 in the original paper—reproduces the most vivid of the results
reported by the Borweins, and provides a link to a paper by one Hanspeter
Schmid.2,21 The latter paper employs a graphic argument to provide insight
into the origin of the Borweins’ surprising result. It was the attractive simplicity

20 Touching obituaries of Richard by Wolfram and Borwein can be found on
the web. Jon Borwein informed me that his Australian grandson, born shortly
after Richard’s death, bears Richard as his middle name.

21 Schmid took successive degrees in electrical engineering and information
technology from ETH/Zürich (1994–2000) and is presently a professor of analog
microelectronics at the University of Applied Sciences in Windisch, Switzerland.
From information reported on his website he appears, from the range and variety
of his interests (analog circuit design, applied information & probability theory,
philosophy of science & technology, music, . . .+ (evidently) mathematics) he
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of Schmid’s argument that initially inspired me.

Looking ahead, there are innumerable sequences of interestingly-structued
real and natural numbers—the

• Fibonacci numbers {1, 1, 2, 3, 5, 8, 13, 21, 34, . . .},
• triangular numbers {1, 3, 6, 10, 15, 21, 28, 36, 45, . . .},
• pentagonal numbers {1, 5, 12, 22, 35, 51, 70, 92, 117, . . .}

etc. come immediately to mind—the reciprocals of which might be used to
define the successive step lengths of shrinking walks. A person with an
inclination to twiddle (mine is presently exhausted) might look to simulations of
some of those. One might look to the endpoint distributions of shrinking walks
in several dimensions. More urgent in my own estimation is the problem posed
on page 16. Do patterns such as those to which it refers arise from other/all
Pisot walks?

figure captions

Figure 1: Superimposed graphs of the Borwein integrands s(x; 1), s(x; 1, 1
3 )

and s(x; 1, 1
3 , 1

5 ).

Figure 2: Graphs of the Borwein integrands s(x; 1), s(x; 1, 1
3 , 1

5 . . . , 1
11 , 1

13 ) and
s(x; 1, 1

3 , 1
5 . . . , 1

13 , 1
15 ). The difference between the latter two is imperceptible,

though they bracket the onset of the “Borwein phenomenon.”

Figure 3: Superimposed Fourier tranforms of the functions sinc(x), sinc( 1
3x)

and sinc(1
5x).

Figure 4: Fourier transforms of s(x; 1), s(x; 1, 1
3 ), s(x; 1, 1

3 , 1
5 ), produced by the

iterated convolution argument described on pages 2–3.

NOTE: Remarks pertaining to all subsequent figures
can be found on pages 12–19.

Figure 5: The 25 possible endpoints of a 5-step Golden Walk, obtained from
the explicit list that appears on page 13. Note that 16 of the walks have doubly
coincident endpoints, while 6 have trebly coincident endpoints.

Figure 6: Union was used to winnow the results of 1000 simulated 5-step
Golden Walks. Small decimal differences prevented it from eliminating all but
two of the instances of co-terminality (identified by dashed grid lines).

Figure 7: DeleteDuplicates was used to eliminate all of the duplications
present in Figure 5. The display is striking for its seeming linearity.

appears to be a somewhat Crandall-like character himself. In 1999–2000 he
published in the Newsletter of the IEEE Professional Communication Society
a series of seven essays—based upon an unpublished list of 38 “debate tricks”
compiled by Schopenhauer—that are depressingly reminiscent of the quality of
recent American political debate (this is, as I write, Election Day 2016).
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Figure 8: Perfect linearity means perfect invariability of the intervals that
separate successive distinct endpoints. The figure displays those differences,
shows that all have one or the other of only two (small) values and that they
exhibit a striking bilateral symmetry.

Figure 9: DeleteDuplicates was used in an effort to extract from the data
provided by a simulated population of 2000 6-step Golden Walks the set of
all distinct endpoints. Mathematica considers the four 0s to be distinct (not
duplicates), presumably because they differ in high decimal places. The display
would be linear if those were (by hand) replaced by a single 0.

Figure 10: The associated set of successive differences. The central triple 0
would be eliminated if the quadruple 0 encountered in Figure 9 were replaced
by a single 0. There would again be only two difference values, again in
bisymmetric array. Of those, the largest (0.1803) was for 5-walks the smallest.

Figures 11 & 12: These figures, based upon 2000-walk simulations, show that
the qualitative features of the preceding constructions pertain also to 7-step
Golden Walks. Again the “smallest becomes largest when n is incremented”
principle is in evidence.

Figures 13, 14 & 15: Working again from the 5-step geometric walk list that
appears on page 13, we set λ to Mayer’s value 0.543689 < 1

2 (
√

5−1) = 0.618034
and repeat the program that produced Figures 5, 7 & 8. The successive
differences are seen in Figure 15 to assume one or another of three values, and
to do so in a bisymmetrically patterned array. Bisymmmetry pertains also to
the left and right halves of the array.

Figure 16: The successive differences pattern for 6-step Mayer walks. The
“smallest becomes largest” rule is seen to be operative.

Figure 17: The successive differences pattern for 7-step Mayer walks. The
“smallest becomes largest” rule is again seen to be operative.

Figures 18 & 19: Working again from the 5-step geometric walk list that
appears on page 13, we set λ equal to Krapivsky & Redner’s “typical” value
0.74 and again repeat the program that produced Figures 7 & 8 and see
that linearity is now lost ; we see that there are now 8 distinct difference values.
Central bisymmetry is maintained, but that of the right/left halves of the figure
is lost. The first and last points stand well apart from the others.

Figure 20: Display of the distinct endpoints of a simulated population of
1,000,000 15-step K&R walks. Nonlinearity is obvious.

Figures 21 & 22: Working again from the 5-step geometric walk list that
appears on page 13, we set λ to the arbitrary but somewhat “less typical” value
2− 1

2 = 0.707107 and repeat the program that produced Figures 18 & 19.
Linearity is lost, but less vividly. There are now only 5 distinct difference
values, and their bisymmetric arrangement is more orderly.
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Figures 23 & 24: In the generic 5-step list (page 16) assign to parameters
{a, b, c, d} the Borwein harmonic values { 1

3 , 1
5 , 1

7 , 1
9}. The resulting array of 32

distinct endpoints is highly nonlinear, the 8 successive difference values widely
scattered.

Figures 25 & 26: Similar remarks pertain to the data produced by simulation
of 6-step Borwein walks. Again, the bilateral symmetry evident in the right/left
halves of the differences figure is striking.

Figure 27: Display of the distinct endpoints of a simulated population of
1,000,000 15-step Borwein walks.

Figures 28 & 29: In the generic 5-step list (page 16) assign to parameters
{a, b, c, d} the simple harmonic values { 1

2 , 1
3 , 1

4 , 1
5}. The resulting array of

32 distinct endpoints is more nearly linear than that produced by the 5-step
Borwein walks, the 5 < 8 successive difference values—though still widely
scattered (on a smaller interval)—more neatly arranged.

Figure 30: Display of the distinct endpoints of a simulated population of
1,000,000 15-step simple harmonic walks.

Figure 31: The flat distribution produced when the endpoints of 2,000,000
simulated 15-step geometric walks (λ set to the critical value 1

2 ) are sorted into
1000 bins of equal width. See page 17 for details.

Figure 32: The self-similar fractal distribution produced when the endpoints
of 2,000,000 simulated 20-step Golden Walks (λ = 1

2 (
√

5 − 1) = 0.618034) are
sorted into 1000 bins of equal width.

Figure 33: The self-similar fractal distribution produced when the endpoints
of 2,000,000 simulated 20-step Mayer Walks (λ = 0.543689 < 1

2 (
√

5 − 1)) are
sorted into 1000 bins of equal width. Some spikes rise (like δ-functions )above 1.

Figure 33B: Endpoints of the same population of Mayer walks, but with bin
width reduced (number of bins increased to 1100). Demonstrates that all such
figures are artifacts of the selected bin width.

Figure 34: The distribution that results when the endpoints of 2,000,000
simulated 20-step K&R walks (λ = 0.74) are sorted into 1000 bins of equal
width.

Figure 35: The distribution that results when the endpoints of 2,000,000
simulated 20-step geometric walks with λ = 1/

√
2 = 0.707107 are sorted into

1000 bins of equal width.

Figure 36: The distribution that results when the endpoints of 2,000,000
simulated 20-step Borwein walks are sorted into 1000 bins of equal width. The
central dip reflects a feature evident in Figure 27.

Figure 37: The distribution that results when the endpoints of 2,000,000
simulated 20-step simple harmonic walks are sorted into 1000 bins of equal
width. Comparison of Figure 30 with Figure 27 provides indication of why
the “central dip” has disappeared.
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Figure 38: The (presumably) self-similar fractal distribution produced when
the endpoints of 2,000,000 simulated 20-step geometric walks with

λ = 1
smallest Pisot number

= 0.754878 > 1
golden ratio

= 0.618034

are sorted into 1000 bins of equal width. The distribution appears to be a spiky
sibling of the K&R distribution (λ = 0.74) shown in Figure 34.

Figure 39: Working again from the 5-step geometric walk list that appears on
page 13, we set λ to Pisot’s value and obtain an array of 24 < 25 distinct
endpoints that is less nearly linear than one might have anticipated. The
bounding endpoints stand apart, in a way we have seen to be characteristic
of all n-step walks.

Figure 40: The associated array of successive differences exhibits central
bilateral symmetry (but not such symmetry on its left/right halves), and the
differences assume 6 distinct values—more than our experience with Golden
and Mayer walks might lead us to anticipate.


